1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
package main
import rl "vendor:raylib"
import "core:fmt"
import "core:math"
import "core:os"
import "core:strconv"
import "core:reflect"
waveform_a : []f32 : {0.0, 0.1, 0.5, 0.3, 0.1, -0.1, 0.0, 0.0, 0.0, 0.0, 0.1, 0.3, 0.0}
waveform_b : []f32 : {0.0, 0.0, 0.0, 0.2, 0.4, 0.2, -0.1, 0.0, 0.0, 0.1, 0.3, 0.1, 0.0}
YELLOW : rl.Color = {254, 175, 1, 255}
ORANGE : rl.Color = {238, 123, 26, 255}
RED : rl.Color = {222, 73, 50, 255}
LERP_SPEED :: 0.20
layout :: struct {
wave_a_start : rl.Vector2,
wave_a_end : rl.Vector2,
wave_a_amp : f32,
wave_b_start : rl.Vector2,
wave_b_end : rl.Vector2,
wave_b_amp : f32,
grid_opacity : f32,
grid_highlight_opacity : f32,
grid_highlight_position : rl.Vector2,
}
slides : [dynamic]layout
state : layout
target : layout
delta : f32
init_slides :: proc() {
// 0
current_slide : layout = {
wave_a_start = {-600, -250},
wave_a_end = {600, -250},
wave_a_amp = 250,
wave_b_start = {-600, 250},
wave_b_end = {600, 250},
wave_b_amp = 250,
grid_opacity = 0,
grid_highlight_opacity = 0,
grid_highlight_position = 0,
}
append(&slides, current_slide)
}
lerp :: proc() {
layout_info := type_info_of(layout)
// Handle the named type wrapper
actual_info := layout_info
if named_info, ok := layout_info.variant.(reflect.Type_Info_Named); ok {
actual_info = named_info.base
}
// Now cast to struct
struct_info := actual_info.variant.(reflect.Type_Info_Struct)
for i in 0..<struct_info.field_count {
field_type := struct_info.types[i]
field_offset := struct_info.offsets[i]
// Get pointers to the field in both global structs
state_ptr := rawptr(uintptr(&state) + field_offset)
target_ptr := rawptr(uintptr(&target) + field_offset)
// Type switch to lerp and write directly back to state
switch field_type.id {
case typeid_of(f32):
from_val := (cast(^f32)state_ptr)^
to_val := (cast(^f32)target_ptr)^
(cast(^f32)state_ptr)^ = from_val + (to_val - from_val) * (1.0 - math.pow(LERP_SPEED, delta))
case typeid_of(rl.Vector2):
from_val := (cast(^rl.Vector2)state_ptr)^
to_val := (cast(^rl.Vector2)target_ptr)^
(cast(^rl.Vector2)state_ptr)^ = from_val + (to_val - from_val) * (1.0 - math.pow(LERP_SPEED, delta))
}
}
}
normalize :: proc(v : rl.Vector2) -> rl.Vector2 {
return v / math.sqrt((v.x*v.x) + (v.y*v.y))
}
draw_waveform :: proc(wave : []f32, start : rl.Vector2, end : rl.Vector2, amp : f32) {
samples := len(wave)
lines := samples-1
rl.DrawLineEx(start, end, 2, rl.DARKGRAY)
total_direction := end - start
step := total_direction / f32(lines)
perpendicular : rl.Vector2 = normalize({total_direction.y, -total_direction.x})
end_pos : rl.Vector2
for value, i in wave[:lines] {
start_base := start + (step*f32(i))
end_base := start + (step*f32(i+1))
start_pos : rl.Vector2 = start_base + (perpendicular*wave[i]*amp)
end_pos = end_base + (perpendicular*wave[i+1]*amp)
rl.DrawLineEx(start_pos, end_pos, 4, rl.PURPLE)
rl.DrawCircleV(start_pos, 5, rl.RED)
}
rl.DrawCircleV(end_pos, 5, rl.RED)
}
draw_grid :: proc(first : rl.Vector2, last : rl.Vector2) {
}
main :: proc() {
fast_forward := -1
if len(os.args) > 1 {
fast_forward, _ = strconv.parse_int(os.args[1])
}
fmt.println("Hello")
// Initialization
//--------------------------------------------------------------------------------------
slide : int = 0
rotation : f32 = 0.0
cameraX : f32 = 0.0
cameraY : f32 = 0.0
camera : rl.Camera2D = {
zoom=1
}
init_slides()
rl.SetConfigFlags({.WINDOW_RESIZABLE})
rl.InitWindow(1920, 1080, "BSC 2025 Presentation")
rl.SetTargetFPS(60)
rl.SetExitKey(nil)
camera.offset = {f32(rl.GetScreenWidth()) / 2, f32(rl.GetScreenHeight()) / 2}
camera.zoom = f32(rl.GetScreenHeight())/1080
for !rl.WindowShouldClose() {
delta = rl.GetFrameTime()
if rl.IsWindowResized() {
height := f32(rl.GetScreenHeight())
width := f32(rl.GetScreenWidth())
camera.offset = {width / 2, height / 2}
camera.zoom = height/1080
}
// Input
//----------------------------------------------------------------------------------
go_forward := false
go_back := false
mousePosition := rl.GetMousePosition()
left_clicked := rl.IsMouseButtonReleased(rl.MouseButton(0))
right_clicked := rl.IsMouseButtonReleased(rl.MouseButton(1))
right_arrow := rl.IsKeyReleased(.RIGHT)
left_arrow := rl.IsKeyReleased(.LEFT)
go_forward = left_clicked || right_arrow
go_back = right_clicked || left_arrow
if slide < fast_forward {
go_forward = true
} else {
fast_forward = -1
}
// Process
//----------------------------------------------------------------------------------
if go_forward {
slide += 1
fmt.printfln("Forward! To slide #{}", slide)
} else if go_back {
slide -= 1
fmt.printfln("Back up! To slide #{}", slide)
}
target = slides[slide]
lerp()
// Draw
//----------------------------------------------------------------------------------
rl.BeginDrawing()
rl.ClearBackground(rl.Color{16, 16, 16, 255})
rl.BeginMode2D(camera)
// World-space drawing
draw_waveform(waveform_a, state.wave_a_start, state.wave_a_end, state.wave_a_amp)
draw_waveform(waveform_b, state.wave_b_start, state.wave_b_end, state.wave_b_amp)
rl.EndMode2D()
// Screen-space drawing
rl.DrawFPS(rl.GetScreenWidth() - 95, 10)
rl.EndDrawing()
//----------------------------------------------------------------------------------
free_all(context.temp_allocator)
}
rl.CloseWindow()
}
|